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1. Introduction. If {X,,t € T} is a family of random variables with zero

means and finite variances, then it is termed a second order centered process (or
time series). Several subclasses of such processes and their analyses are discussed
in this article. They are taken to be centered for convenience. The simplest and
most well-understood class is the statsonary one. This is a second arder process
whose covariance r is a continuous function which is invariant under shifts of the
time axis T' taken to be either integers, T = Z (the discrete case), or the real line,

T = R (the continous case). Thus in either case one has:

r(s,t) = E(X,X,) = /0 X, X.dP, s, t, €T (1)

and r(s,t) = #(s — t) which depends on the difference of & and ¢t. Writing r for 7,

it follows from the classical theorems of Herglotz and Bochner that r is expressible ;Ji
as: {

1
r(s —t) = L (= P(d)), a,t, €T, (2) |

where 7 = [0,2x) if T = Zand T = R if T = R. Here F is a nonnegative, -~ |
nondecreasing bounded function on T, called the spectral function of the process.
The importance of the stationary class in electrical and communication engiheer- !
ing is well-known and a good expositon may be found in Yaglom [34] where the
pioneering works of Wiener and Kolmogorov are also discussed. Many statistical ‘
problems on these processes have been treated by Grenander and Rosenblatt [11], |
and by Parzen (22] who includes some related extensions.

In a number of other applications, stationarity is an unaccept:able restriction. ‘.;

. - . - . l . . .
Since one is not certain about the fulfillment of the stationarity assumption, it is
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at least desirable to have a knowledge as to how far the results obtained under
this condition are still valid when it is relaxed. In other words, one wants to know
whether there is some kind of “robustness” for this work. In a response to such
questions and also to take into account sonre homestly nonstationary processes,
the classes of harmonizable anci Karhunen families bave been introduced indepen-
dently and simultaneously by Loéve [16] and Karhunen [14|. Only slightly later
a common generalization of both these classes was formulated by Cramér [6]. An
analysis and interrelations together with some of their extensions constitute the
main theme of the present exposition. It turns out that harmonizable processes,
properly generalized, have the “robustness properties” alluded to above. Also their
study proceeds through Karhunen classes since it is shown that the harmonizable
family is an important subset of Karhunen processes. A discussion of Cramér’s
class is included since technically this illuminates the structure of the above two
families and has independent interest.

There are two other important classes of nonstationary processes that have
been considered in recent studies on the subject. One is the class(KF), studied
extensively by Kampé de Feriet and Frenkiel [13] and independently by Parzen
(21] who termed it “asymptotically stationary”, and by Rozanov [31]. The second
one is the Cramér-Hida class which is based on the “multiplicity theory”, having
been motivated by the classical work of Hellinger and Hahn on infinite matrices.
It turns out that a stationary process has multiplicity one, while there is a har-
monizable process of any given multiplicity, 1 < N < oo, (cf.[7],{12],(5]). Even in
the multiplicity one case, there are several types of nonstationary processes useful
in prediction and filtering problems. This indicates that classes of nonstationary
processes can be studied, using different techniques frequently in the time domain.
It will also be found that generalizations of spectral ideas have a role to play in
this work. Let us thus turn to a detailed description of these statements.
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2. Harmonznable processes. From the point of view of applications, one of the
most useful extensions of stationarity is harmonizability. Since for nonstationary
processes (of second order) the covariance function r, given by (1), must depend
on both variables s, ¢, it is natural to consider those processes for which the analog
of (2) still holds. This leads to the following concept, introduced by Loéve [16],
and it is called strongly harmonszable hereafter. Namely, the covariance r admits

the representation:

r(s,t) = /T [r ezp(ts) — it)')F(d),dX'), s,t€T, (3)

where F is a covariance function of bounded variation on T x 7.

In contrast to the Bochner-Herglotz theorem, there is no usable characteriza-
tion of such an r. But it is easily seen that strongly harmonizable processes exist
in abundance. Indeed, let f be any (Lebesgue)integrable scalar function on the
line, and denote by f its Fourier transform, i.e.,

flt)= /R e f(N)d), teR. (4)

If §{ is a random variable with mean zero and unit variance, comsider {X, =

I3 f (t),t € R}. Then X; has mean zero and the covariance r is given by

r(8,8) = E(X. %) = F(a) F(£) = /R /R ezp(ish — itN') FO)FOVdAN.
Taking s
PO = [ [ 1) GHdedy,

one verifies that F is positive definite and of bounded variation so that the X,
process is strongly harmonizable. All finste linear combinations of such “simple”

processes constitute a large class and if F in (2) is absolutely continuous, then
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these simple processes are even “linearly dense” in a certain well-defined sense.
On the other hand, if F of (3) concentrates on the diagonal A = A’, then clearly

(3) reduces to (2). Thus stationary processes are properly extended.

Even though the Loéve extension of stationarity is useful, it does not go far
enough to afford a flexibility for linear operations on these processes. Since the lat-
ter operations appear naturally in filtering problems, a further extension is needed
to take care of these applications. First let us consider an example to understand
how certain simple 'inear operations lead from stationarity to problems beyond
the strongly harmonizable class. Thus let L3(P) be the space of scalar random
variables with zero means and finite variances so that a second order process con-
sidered in this paper is a subset of L3(P). Let the metric (or norm) be denoted
by lIfll = VIE(f1?)], f € L2(P). If A is a bounded linear transformation on
L3(P), so that AX, = Y; € L3(P), consider a stationary (or strongly harmoniz-
able) process {X,,t € T}, and the transformed process {Y;,t € T}. If the range
of A is finite dimensional, then the Y; process is strongly harmonizable (can be
nonstationary) and if the range of A is infinite dimensional then the ¥, process
need not be strongly harmonizable. For instance, let T = Z,X, = f,, an or-
thonormal sequence (hence stationary) in L3(P), and A be the projection such
that ¥, = AX, = faforn > 0, = 0 for n < 0. Then the Y, -sequence is a
truncation of the original orthonormal sequence, but it is not strongly harmoniz-
able. This fact as well as the preceding general statement on the range of A is not
entirely simple. The details maybe found in [28]. Since, as remarked earlier, linear
operations are important for (filtering and other) practical problems, one should
have an extension to include at least these questions. Fortunately this is possible

and.it can be formulated as follows.

Let {X,,t € T} C L3(P) be a process with r as its covariance. If r admits

a representation of the form (3) with F(-,:) as a covariance function which is
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not necessarily of bounded variation (as demanded in (3)) but satisfies only the
weaker condition of finite Fréchet variation, then the process is termed weakly

harmonizable. Recall that F has finite Fréchet variation on R3 if

n
|F|(R x R) = sup{| Z a,-('l,-/ / F(dA,d))|:|as| €1, a5 €C
=1 L JI

{L;}7 disjoint intervals sn R, n >1} < co.

In case a;d; f; ij F(d),d)) is replaced in the above by a; = 1and [} Ji, [F(dA, dX)|;
then one has the usual (Vitali) bounded variation. This small alteration makes an
essential difference since |F|(R x R) < co can hold when the usual variation on R
is infinite. A simple example exhibiting this phenomenon is the truncated series of
the preceding paragraph whose verification, however, needs some work. Thus each
strongly harmonizable process is weakly harmonizable but not conversely, and the
latter is a strictly larger class. But one has to make concession to a technical prob-
lem in this generalization. The integral in (3) is in the usual Lebesgue-Stieltjes
sense when F is of bounded variation, but in the general case it must be defined in
the sense of Morse and Transue [18]. The thus defined MT-integral is somewhat
weaker than the usual LS-one in that the generalization does not admit the Jordan
type decomposition, and the standard Fubini type theorem is not valid. However, -7
enough usable proi)erties are available to proceed with a substantial amount of the
work for many applications. A systematic account on the structural properties of
these extended processes may be found in [28], (cf. also [20]). As a consequence one
deduces that if {X,,t € T'} is weakly harmonizable and A is a bounded linear (and
even some unbounded ones such as the differential) transformation, ¥; = AX,,
then {Y;,¢t € T} is also weakly harmonizable. Thus the latter class is closed under
such mappings. For these reasons, the positive definite function ¥ in (3), of finite
Fréchet variation, is often called the (generalized) spectral function of the harmo-
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nizable process, even though it can be compiex valued. Such spectra have aiso

important roles to play in applications such as sampling the process, filtering and
even prediction problems.

The above definition may be given a different (but equivalent) form due to
Bochner [2]. For a reference it is stated as follows:

Theorem 2.1 A second order process {X,,t € T} C L3(P) is weakly harmo-
nizable iff (= if and only if)

()B(X|?) <M < o0,t €T, for a constant M > 0,

(¢%) the covariance r(:,-) is continuous on T x T
(#58)sup{E(| [p (1) X(t)dt]?) : |Iflle < 1} < 00 )

where f is the Fourier transform, given by (4), for each integrable f on T and the
tntegral sn (5) is defined in a standard manner as a vector (or Bochner) integral,
[1flle being the uniform (= supremum) norm of f.

Even though both these harmonizability concepts are generalizations of sta-
tionarity, there is a deep reciprocal relationship between them. This is quite im-
portant for some applications. The following example gives an indication of this
property and explains the underlying reasons more vividly.

Example. Let {S(t),t > 0} be a family of bounded linear mappings on L3(P)
such that

(i) S(u+v) =S(u)S(v), u,v>0, $(0)= identity
(ii) [IS(w) fl < |Ifll, f € L3(P) where ||f||> = E(|f]?), and
(iii) {|S(u)f = fI| — 0 as u — 0+.

Such a family is usually called a continuous contraction semigroup on L3(P).

For any given X, € L3(P) define the process {Y;,t € T} as:

Y(t)=S(t)Xo, sf t20,=8%(-t)Xy, if t<O,
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where S*(u) stands for the adjoint of S(u) so that it is a linear mapping satisfying

the relation

E((S(u)f)g) = E(f(5*(«)3)), all f,9 in L3(P).

Then the Y (t) -process can be shown to be weakly harmonizable. This is not
obvious. One shows that, on letting S(—u) = S*(u),u > 0, the family {S(u),u €
T} is positive definite in the sense that

n n

ZZ E((S(u; —u;)f;)f;) 20, fi e Li(P),

i=1j=1

for each finite set {t;,...,un} C T. This is easy if T = Z and the case that
T = R is then reducible to the former. Then one applies a form of the next
result to deduce that there is a family of unitary transformations V; (meaning
ViV;* = V;*V; = identity, (i) and (iii) hold), on a larger space L3(P') O LE(P) such
that $(t) = QV;,t € T. Here Q is the orthogonal projection of L3( P') onto L3(P).
It should be noted that if S(t) = V;, so that LZ(P') = L3(P) and Q = identity,
then Y; = V; Xy,t € T, gives the classical representation of a stationary process.
Thus the connection between these two classes obtained by an enlargement of the
underlying probability space is an important and a deep result.

The precise statement alluded to above is the following:

Theorem 2.2 Let {Y;,t € T} C LI(P) be a given (weakly or strongly) harmo-
nizable process. Then there ezists a possibly enlarged probability space on which is
defined L3(P) contasning L3(P), on orthogonal projection Q on L3(P) with range
L3(P), and o stationary process { X.,t € T} C L3(P)) such that




Y, = QX,,t € T. (This Y, process 1s termed a dslation of the harmonszable X,—
process.) In the opposite direction, each stationary process {X,,t € T} C L3(P)
and each continuous linear transformation A on L2(P) define {Y; = AX,,t € T},
as @ weakly (but usually not strongly) harmonizable process in L3(P).

The super space Lg(f’) is not generally unique, but one can find a minimal
space with the desired properties. The result and its extended space may be
obtained essentially “constructively.” It is related to some work of M.A. Naimark,
B. Sz-Nagy and others on Hilbert space operator theory. A detailed proof with
related references is given in [28]. Based on this result one can show that each
weakly harmonizable process may be represented in terms of a (continuous) positive
definite semi-group, as described in the preceding example.

The above theorem enables some extensions of the well-known results from the
stationary theory to the harmonizable case. For instance, the following inversion

formula for F(-,-) of (3) can be obtained from the classical work at once.

Proposition 2.3 Let r be a weakly harmonizable covariance function with F
as its representing function-the spectral measure. If A = (a1,a2), B = (b1,02) are

two intervals such that a;,b;,1 = 1,2, are continusty posnts of F, then one has

a prp =830 _ —ia e ,ibgt _ g0t
F(A,B) = alix.noo/ / : . - r(s,t)dsdt. (6)
Ges J~a /-8 —~13 1t

The generally complex valued spectral function ¥ of the process plays a role,
in analyzing harmonizable processes somewhat similar to the one given by the
classical case (2). So it is desirable to estimate F and investigate the asymptotic
properties of such estimators. This problem, even in the strongly harmonizable
case, is not yet solved. Other unresolved points will be recorded for future work,

as the exposition proceeds.




The strongly harmonizable case admits an extension in a slightly different

direction. The covariance function r of (3) may be written as:

r(s,t) = /1- /T o(s, \)FE NV F (A, dN'), s,teT. (7)

where g(t,A) = ezp(st)), which is 27x periodic in t for each A € T. Also g is
bounded and jointly continuous in the variables ¢, A\. The result (7) is meaningful
ifg:TxD—C(DC T) is almost periodic on T for each compact subset D of
T. More explicitly, a complex valued continuous function g on T x D is almoat
persodic on T uniformly relative to D if for each compact subset K of D, and eac!
€ > 0, there is a number lg = lg(¢, K) such that each interval I C T of length

contains a number r (called an ¢ -translation number of g) for which one has

lg(t+7,2) —g(t,A)| <e teT,A€K. (8)

If D is a single point then g is called the classical almost periodic function; and
in any case, for each A € K C D, g(-,A) is bounded. With this concept, a second
order process {X,,t € T'} C L3(P) is termed almost harmonszable if its covariance
r admits the representation (7) with respect to a family {g(-,A),A e’f‘} of almost
periodic functions on T uniformly relative to T, and a covariance function F of
bounded variation. It will be seen in Section 6 below that this family inherits an
important structural property of strongly harmonizable processes of which it is an
extension. )

From an applicational point of view, however, one should consider multivariate
processes. Thus if X, : @ — C™,t € T, so that X; = (X},..,XP), let X! €
L3(P),s = 1,..,n;t € T. Then the X, -process is termed multivariate strongly or
weakly or almost harmonszable (relative to a fixed scalar almost periodic g -family

in the last case) if for each vector @ = (al,...,a™) € C™, the scalar process




r--

n
Xr=)Y o'X], teT,
=1
is of the same type as defined in the preceding paragraphs. From this definition, it
follows after an easy algebraic manipulation that for each 1 < 7,k < n, and s,¢ in

T, the (cross-) covariance function r;z of the component processes X,j , Xk, is also

harmonizable and that

ri(s,t) = /T /T AN Fo(dA, dN), st €T, (9)

where Fj;(A x B) = Fi;(B x A), and each Fj; is of respectively usual (Vitali)
or Fréchet variation finite, F;; being positive definite (Fjzx need not be). If r =
(rik,1 < 7,k < n) and F = (Fj,1 < j,k < n) are n-by-n matrices, then the

matrix covariance function r of X, admits the representation

r(s,8) = /T /T gls, V(5 MYF(dA, dX"), (10)

with g(s,A) = ¢’** in the (weak or strong) harmonizable case. The integrals here
are defined componentwise. Again F will be called the spectral matriz function of
the vector process {X,,t € T}.

In all the above cases F has the following important property inherited from

0 < trace( L /T FOVF(d, dN) (M) < oo (11)

for any m-by-n matrix function f with bounded Borel entries. Here f* is the
conjugate transpose of f. In the stationary case ome has F(A,A') = 6 /G(A),
where )i/ is the Kronecker deita and G is a positive definite hermitean n-by-n
matrix function. In the general (e.g., harmonizable) cases the latter property is

no longer present because of the behavior of the off-diagonal entries of F noted

10




earlier. Before considering the spectral properties of the multivariate harmonizable
processes, it will be necessary to discuss another extension of stationarity due to

Karhunen [14] and some of its ramifications. Let us introduce this.

8. Karhunen class. It will be useful to motivate the concept in the following
way. Consider a stationary (scalar) covariance function r. By (2) it has a spectral
function F which is positive, increasing, and bounded. Suppose that F admits a
density f (relative to the Lebesgue measure). Then (T' = R so that T =R also)

r(s,t) = /T e (*=t £(A)dA
= Teiu\ /f(/\)(e“‘\ /f(A))-dd\
= /T h(s + w)A(E T w)du, o, tE€T, (12)

where 4 is the Fourier transform of /7 (which exists) and then the last equality
follows by the Parseval formula (since /f is square integrable). Note that if T = Z,
then A is a polygonal function and the integral in (12) reduces to a (possibly infinite)
sum. Thus a process whose covarinace is representable by a formula-of the type
(12) relative to a Borel family{A(t, ), ¢t € T} and a measure p (here A(2, ) = h(t+:)
and du(A) = d)) includes the stationary class, and brings in considerable flexibility.
It should also be observed, from (12) and (2), that even a stationary covariance
can have different representations, and this remark will be pertinent later on. Let

us thus present the desired general concept.

Definition. A process {X,,t € T} C L%(P) with covariance r is said to
belong to the Karhunen class if there is an auxiliary measure space (5, §,v) and a

set of complex functions {g(¢,-),t € T} c L?(S, S, v) such that

r(t1,t2) = /;g(t;, A)g(t2, \v(d)), t;€T,i=1,2. (13)

11




Here both S, T can be general sets without any relation. In applications, one
usually has T = R,Z (as is assumed in this article) and then § = T (=R, or[0, 27)),
or C, or such others. Also v can be a nonfinite measure (dv = dJ, the Lebesgue

measure on R in (12) is an example).

The Karhunen class is quite large. It was already noted that stationary pro-
cesses are included in it. From the forms (4) and (13) it is not at all evident that
there is any relationship between harmonizable and Karhunen classes. It will now
be shown that the former is also a subset of the latter. This fact could not be
obtained until the availability of the dilation result (Theorem 2.2). It also depends
on another classical fact (due to Cramér) that each stationary process {X,,t € T}

is representable as :

X, = [re"“‘Z(dA), teR, (14)

where Z(A) € L3(P) and E(Z(A)Z(B)) = F(AN B), for any Borel sets 4, B C T,
the measure F' being the same as that of (2) which is related to the covariance
function r of the X, process. Such a Z(-) is called an orthogonally scattered measure
by Masani [17]. With this set up one has:

Theorem 3.1 Each weakly harmonizable process {X,,t € T} is also a Karhunen -

process relative to a finite positive measure v on T and a sustable Borel famsly of
functions {f,,t € T} in L3(T,v).

Proof. A sketch of the argument follows because it is not yet available in the
literature, and it is not long. Since the X, process is weakly harmonizable, by
Theorem 2.2 there exists a stationary dilation {Y;,t € T} C L3(P) on a larger
probability space and L}(P) can be identified as a subspace, such that X, =
QY:,t €T, and Q is the orthogoﬁal projection from L%(P) onto L3(P). But by
(14),

12




Y..—./ e Z(d)), te€T,

T
and Z is orthogonally scattered. Let v(A4) = E(]Z(A)?).Then v(-) is a finite
positive measure on T. But by a classical theorem of Kolmogorov (see (32], p. 33,
and also [17], Thm. 5.10), there exists an orthogonal projection IT on L%(T,v) into
itself induced by @ such that

Xe = QY. = Q( /T et Z(dX)) = /T () (A)Z(d)), teT. (15)

If f(t,A) = (¢*1))(A), A € T, then { f;,t € T} € L3(T,v) and (15) further implies

r(a,t) = B(X, %) = /T £o, N FTE A (dA).

This means that r has the representation (13) relative to {f(¢,:),t € T} and v, so
that the X, is of Karbunen class, as asserted.

This result which is a consequence of the preceding work, exhibits a tfype of in-
clusiveness of the Karhunen class and will be shown below to have.a deeper impact
on the structural analysis of (multivariate) harmonizable processes. It is however
also useful to note another property of this family regarding the existence of shift
operators on a nonstationary subclass. This is significant since harmonizable pro-~
cesses themselves actually do not admit such shifts in contrast to the stationary
class. Let us explaiﬁ this in more detail because it is not at all obvious.

Let {X,,t € T} c L2(P) be a process. For each s € T, define r,X, = X,4,
and, if possible, extend 7, as a linear transformation on L3(P). The thus extended
7, {also denoted by the same symbol) is called a shift operator on the process. If

the X; process is stationary then it is well-known that such a r, exists, and in fact

E((roX)(TXs)) = E(XopuKoin) = r(u = v) = E(X, X,).




Thus r, preserves the lengths (= norms) and it is unitary. However, for a harmoniz-
able process such a r, need not exist. For instance, consider Y; = X, for¢t > 0,=0
for t < 0 where the X, process is stationary. Then by Theorem 2.2, {Y;,t € T} is
weakly harmonizable, but if u,v < 0, and s € R such that u+3 > 0,v+ s > 0, for
all such s,

E(X‘X,) =0 99 r(u - 1)) = E(X,H..X‘H.,).

In fact, assuming that the X, process is not identically zero, one has

I%al? = E(|Ya?) = 0, but [|r.Yu|[? = E([¥ural?) = r(0) # 0.

Hence 7, cannot be linearly extended. Here are some simple (good) sufficient
conditions for a shift operator r, to exist and be continuous. For each finite set
t1,...,tn of points from T, and complex numbers a;,...,aq, if Un = B2 8¢Xs,,
then

n

Un=0=1,Un =) aiXe,4s =0. , (16)
s=1
Equivalently
n n
U2 =D 3 aajr(ti,t;) = 0
=1 =1
implies

n
IrUall? =D aajr(ti + 8,t; +2) =0.

=1j=1

14
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Then r, can be extended by linearity (unboundedly in general) onto the linear
subspace ¥ of L2(P) generated by {X,,t € T}. Such a r, will also be bounded if

there exists a number ¢ > 0 such that

lIreUnl| < ¢||Unl]- (17)

In the stationary case ¢ = 1 and there is equality in (17). As an easy consequence of
(16), one will have 7,7, = 7,4, and hence on the relevant subspace ¥, {r,,s € T}
should form a semi-group. Since this is true for the stationary case (with r, as
unitary) and since one wants to include some nonstationary processes, it is natural
to look for the r, family, with some structure, at least as a normal operator semi-
group, i.e. {r,,s € T} should satisfy the commutativity relations 7,7} = r;'r, (7 is
the adjoint of 7,). Let us find out possible nonstationary processes admitted under
such an assumption, since the stationary class is automatically included (because
every unitary operator is normal). The mathematical detail will be minimized
here.

Let {r,,3 2 0} be a bounded semi-group of normal shifts on {X,,¢ > 0} such
that ||7,X—X|| = 0 as s — 0 for each X € X, the closed span of the X, in LZ(P). In
order to include the unitary (or equivalently the stationary) case, r, should not be
assumed self-adjoint! Thus normality is the next reasonable generalization. [Also
the condition that ||r, X—X|| — 0 is known to be equivalent to the strong continuity
of r, for s > 0 and the boundedness of , on 0 < s < 1 as well as the density of
UssoTe(¥) in ¥. This is thus a technical hypothesis.] Let A, = (m, — I)/A,h > C.
Then Aj is 2 bounded normal transformation for each h. It is a consequence of

the classical theory of such semi-groups that for each X € ¥ one has

T, X = ’!1_% e*Ar X, (18)
the limit existing in the metric of ¥, uniformly in s on closed intervals [0, a},a > 0.

15
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On the other hand, for each A > 0, A, is a bounded normal operator on the Hilbert
space N. Hence one can invoke the standard spectral theorem according to which

there existis a “resolution of the identity”, {Ex(A), A C C} such that

A;.,X=/ zER(d2)X, X € ¥y, (19)
C

where the integral is a vector integral and uf({A) = Ex(A)X € X, gives a vector
measure. Here ¥o C X is the subspace for which the integral exists, i.e. zis uj

integrable for X € ¥y. But from the same theory one can also deduce that

A X = / e**Ey(d2)X, X € ¥y C Ho (20)

for which ¢** is BE -mtegrable K y* € ¥*, then y*E,(-)X is a signed measure in
(20) and if y* = X(€ ¥* = X) then it is a positive bounded measure for each
h so that one can invoke the Helly selection principle and then the Helly-Bray
theorem in ome of its forms to conclude that limp—o y* Ex(-) X converges to some
Vz,9°, a signed measure. This may be represented as y*F(:)X for an F(-) which
has properties analogous to those of Ej(-). Here the argument, which is standard
in spectral theory, needs much care and detail. With this one can take limits in
(20) as A — 0 and interchange it with the integral to get

7,X = lim e"A* X = / e** F(dz)X. (21)
h~—0 Cc

Thus the measure F(-)X is orthogonally scattered and is supported by the inter-
section of the spectral sets of Ay, h > 0. It now follows that, if X, = r,X,, then
by (21) with X = Xo(€ ¥;) there, one gets

X, = fc e**Z(d)),s >0 (22)
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where Z(-) on C is an L3( P)- valued orthogonally scattered measure. The covari-

ance function r of this process is given by

r(s,t) = E(X,X:) = /;’ ezp(sz + tz) G(dz), (23)

with G(AN B) = E(Z(A)Z(B)). f § = C and v = G in (13), one sees that
{X,,s 2 0} is a Karhunen process relative to f(3,),3 20, f(s,2) = ¢**, and the
finite positive measure G such that f(s,-) € L%(C,G),s 2 0. If C is replaced by
its imaginary axis, and for s < 0 the process is extended with X, = r*,X,, then
the stationary case is recovered (cf. (2)). That (23) is essentially the largest such
subclass of Karhunen processes admitting shifts again involved further analysis
and this was shown by Getoor[9] in detail.

Thus the Karhunen class contains a subset of nonstationary processes which
admit shift operations on them and also a subset of nonstationary processes {namely
the harmonizable class) which do not admit such transformations. Since the repre-
senting measures in (3) and (23) or (13) are of a different character (it is complex
“bimeasure” in (3) and a regular signed measure in (13)), a study of Karhunen pro-
cesses becomes advantageous for a structural analysis of various stochastic models.
On the other hand (3) shows a close relationship of some processes with a pos-
sibility of employing the finer Fourier analytic methods, giving perhaps a more
detailed insight into their behavior. Thus both of these viewpoints are pertinent
in understanding many nonstationary phenomena.

4. Cramér class. After seeing the work of the preceding two sections it is
natural to ask whether one can define a more inclusive nonstationary class incor-
porating and extending the ideas of both Karhunen an Loéve. Indeed the answer
is yes and such a family was already introduced by Cramér in 1951, [6], and a brief
description of it is in order. This also has an independent methodological interest

since it results quite simply under linear transformations of Karhunen classes in
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much the same way that harmonizable families result under similar mappings from
the stationary ones.

One says that a function F on T x T into C is locally of (Fréchet) variation
finite if the restriction of F to each finite proper subrectangle I x I of ¥ x T has
the (Fréchet) variation finite, I C T being a finite interval. Let us now state the
concept in:

Definition. A second order process {X,,t € T} C L3(P) is of Cramér class

(or class (C)) if its covariance function r is representable as:

r(t1,t2) = [q[qg(tl, Ag(tz, M)v(dr,dX), t; €T,1=1,2, (24)

relative to a family {g(t,),t € T} of Borel functions and a positive definite function
v of locally bounded variation on S x §, S being a subset of T (or more generally a

locally compact space) and each g satisfying the (Lebegue) integrability condition:

0< L /s o, Ve (dA, dN') < oo, t € T. (25)

If v has a locally finite Fréchet variation and the integrals in (24) .and (25) are in
Morse-Transue sense, the corresponding concept is called the weakly of class (C).

It should be noted that, in (24), v is of locally finite variation means that
v determines a regular complex measure v on S x S, which is locally finite. |n
particular, if S = R, the variation measure of v is ¢ finite. In the Fréchet-vanation
case, v does not determine such a measure, but it is merely a “C- bimeasure” which
is locally finite. If, however v concentrates on the diagonal of § x §, then (24)
reduces to (12) and the Karhunen class is thus included in class (C) which in turn
is included in weakly of class (C). Here, if g(t,A) = e"** S = T, then necessarily
v will be of (Fréchet) variation finite and the harmonizable class is realized. Thus

the following hierarchy of nonstationary classes is obtained:
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Stationary C strongly harmonizable
C weakly harmonizable
C Karhunen class
C Cramér class
C weakly of class(C).

All these inclusions are proper. One key feature is that each member of these
classes admits an integral representation analogous to that of (14), though their
proofs in each case differ considerably.

Remembering the dilation of a harmonizable series into a stationary one as
given in Theorem 2.2, one might ask for a similar result between the Cramér and
Karhunen classes. The methods and ideas of proof of that result extend to give
ounly the following somewhat weaker statement.

Theorem 4.1 If {X,,t € T} c L3(P) s a Karhunen process and A is a
bounded linear transformation on LE(P) into itself, then {Y, = AX,,t €T}, s a
process of class (C)] whenever the representing measure G of (13) is finite. The
converse direction (on dilation) s not necessarsly valid. However, if in (24) v s
of finite (Fréchet) variation and each g(t,-),t € T, s individually a bounded Borel
function, then such a class (C) proces can be dilated to a Karhunen process on a
larger space L3(P) containing L2(P).

In this generaliation, it is significant that the full dilation result does not ob-
tain. Only an interesting subclass extends. Details and related references with
further extensions on the problem can be found in [28]. It will appear in applica-
tions (cf. Section 8 below) that these classes arise naturally, especially as solutions
of linear stochastic differential equations of filtering and signal extraction prob-
lems. Another important reason for a study of Karuhunen class will emerge in

Section 7.
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5. Multivariate harmonizable processes. An n-dimensional harmonizabie pro-
cesses X; = (X},...,X?),t € T, as defined in Section 2 (cf.(9) —(11)), has its

covariance matrix r representable as:

r(s,t) = / / e""\-"')"F(d/\,dA'), 3,teT,
PJF

for a suitable n-by-n matrix of C-bimeasures F. A similar multivariate analog of
Cramér and Karhunen processes can be given with a corresponding formula in the
form of (10). Note that F is also hermitean positive definite for the Karbunen
class but not for the Cramér and harmonizable families. Since there are not many
results available for other classes, the more familiar (nonstationary) harmonizable
case will be discussed here. For this, the spectrum plays a role somewhat analogous
to that of the stationary case, and its spectral domain is given as follows.

In all the extensions of stationarity considered above, their covariance func-
tions admit “factorizable” kernels for their integrands (cf. (3), (13), (24)). This
fact translates itself into integral representations of their sample paths as in (22)

or analogously:

X, = / dt,NZ(d)), teT, (26)
s
where Z is a measure on § into L3(P) which is orthogonally scattered for the

Karhunen case (just as for the stationary processes). It satisfies

E(Z(A)Z(B)) = F(A, B),
for the Cramér and harmonizable processes. Here F is generally only a bimeasure.
The symbol in (26) is a suitable stochastic (or vector measure) integral. It is these
representations that make up a study of the related spectral domain, and inherit

several properties of the time domain. Thus in these cases their spectral spaces

are given as:
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E’(F)={f:S—»C|//f(,\)T(A')F(d/\,dA’)=(f,f),eziat.s}. (27)
SJS

For the harmonizable case § = T, and in all cases 0 < (f, f) < co, because of the
special relationship between F and Z. The (-,-) gives a (semi-)inner product and

a (semi-) norm: ||f||% = (f, f). For the multivariate case one has:

L(F) = {£:5 =M [ [ SOF@DNSN) = (1), exists). (28)
SJS

and ||fl|% = trace(f, f) defines a semi-norm, f* being the conjugate transpose of
the matrix function f(€ M, the space of complex m-by-n matrices). Again § = T
for the harmonziable case. In order to carry out linear operations for problems
such as filtering and prediction, it is necessary to know the structural properties of
the space £2(F). This is nontrivial and especially in the multivariate case it was
open for sometime (cf. [15]). The following key property which was needed there,
has recently been estabished for the harmonizable case in [30] and can be stated
as:

Theorem 5.1 If {X,,t € T} is a multivariate weakly harmonszable process
with F as sts spectral matriz function and L2(F), defined by (28), 15 sts spectral
domain space then (L%(F),||-||¢) is complete in the sense that it is a Hilbert space
of equivalence classes of matrices with inner product defined by ((,-)) = trace(-,-)

where

(f,0) = /T /T FA)F(dA, dA")g" (N, (29)

the “star” denoting the conjugate transpose. Here L2(F) is a linear space of [com-
plez) matriz functions on T with constant matriz coefficients for linear combina-

tions.
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In order to assert a similar property for the class(C) or Karhunen class, it will

be necessary to restrict the family {g(¢,-), ¢t € T'} suitably.

The importance of the above property is better understood if one looks at an
application. The following is one such for signal extraction. A general signal plus

noise model is given by

Xe=S8+ N, teT, (30)

where the S; and N, are (stochastic) signal and noise processes both of which are
supposed to be weakly harmonizable so that the output process X, is also, whenever
the S; and N: are uncorrelated or harmonizably correlated. For simplicity of
exposition here, let us assume that they are uncorrelated. If F;,F,, F, are the
(known) spectral functions of these processes, let A(A) = F,(A,T) + Fo (A, T) and
k()) = F,(A,T). The knowledge of these spectral functions is assumed from prior
considerations. The problem here is to estimate S, optimally, for any a € T, based
on the output X; (i.e. on a realization). Here optimality refers to the least squares
(or error mean square) criterion. A solution of the problem, using Theorem 5.1,
can be given as

Theorem 5.2 Let X, = S, + N,,t € T, be a harmonizable output of the (un-
correlated harmonizable) signal plus notse model (30). Let Z.(-) be the stochastic
representing measure of the X, process given by (14) on (26). Then the least squares

optimal estimation S, of the signal S, att = a € T, 1s obtained as:

§a = /T Go(N) Za(dN), (31)

where the “signal characteristic” G,(-) is an n-by-n matriz function which is a

unique solution of the (matriz) integral equation




P_——-—-_-_-—-_—_—W

/_ Ga(A)A(dA) = / e k(d)), (32)
T T

the h(-) and k(-) being the “margsinal” measures of the spectral functions of the
St and N, processes defined above. The variance-covariance matriz of the error

Se — Sa 18 given by

E. = /T /T e | (d), d)) - /T /T Ga(A) Fo(dX, dA)Go(A). (33)

To use this result in specific applications, one has to compute F, and Z,.
From the data one can calculate the covariance r, and then F; is obtained by
means of formula (6). The stochastic measure Z,(-) can also be obtained by using
the dilation theorem (cf. Theorem 2.2) and a known result from the stationary
theory (cf. (32|, pp. 26-27). Thus for any interval A = (a,b) c T for which

Z({a}) =0 = Z({b}), one has (limits taken in mean-square sense)

Z(A) _ Xo(d—a)+limp oo 51; 20<“‘|S" L:“T-,E:ﬂ'xk fT=12
lima-oco 51; ffa -'“_—“—.u ngt, ifT=R.

In the one dimensional stationary case, if all spectral functions have densities -
fz1 fer fn, then (32) and (33) reduce to the well-known results where the g, and o,

can now be given explicitly as:

galA) = €2 ,(0)/(fo(A) + fa(A)), 02 = B(|So[?) /T 10a (N2 (A)dA.

6. Class(KF) and harmonszability. As noted in the preceding sections, many
processes which are extensions of the stationary ones with “triangular covariances”

admit integral representations such as (26). However, there are other classes based
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| on the behavior of covariances at infinity. An important such family, motivated by
| certain summability methods, is the one introduced in the 1950’s by J. Kampé de
Feriet and F. N. Frenkiel, with a detailed exposition later in {13]. It will be called
class(KF). This was also independently given, slightly later, by Yu.A. Rozanov [31]
and E. Parzen [21], the latter under the name “asymptotic stationarity.” Let us
state the precise concept here.

Definition. A process {X,,t € T} C L3(P) with a continuous covariance r is

of class(KF) if for each h € T the following limit exists:

Hh) = {lfm,,_.a, 1 f(';:‘"_rl(a,a +|h)ds, T =R
limp—oo 2234 2r(k, k + |B]), T =2Z. (34)
It may be verified that each of the quantities on the right of (34) before
taking the limit is positive definite so that, when the limits exist, 7(-) is also. The
continuity of 7 in the discrete case is trivial and in the case that T = R,r is
measurable even when it is not continuous. In either case, as a consequence of the
classical Herglotz-Bochner-Riesz theorem on a characterization of such functions

(cf.,e.g.,[29], Sections 4.4 and 4.5) there is a unique positive bounded nondecreasing

H(-) such that

#(h) = /T e* H(d)), a-a-(h)ET, (35)

where a - a - (h) refers to Lebesgue measure when T = R, and all A if T = Z.
In analogy with (2), H(-) is termed an associated spectral function of the X, pro-
cess. Here several examples of processes in class(KF), in addition to the obvious
stationary family for which (k) = r(|h]), will be noted.

Every strongly barmonizable process is in class(KF). This was first noted by
Rozanov in [31] and independently later analyzed in more detail by Bhagavan [1].

In fact, somewhat more generally, almost harmonizable processes (cf. Sec. 2)also
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belong to class(KF), as shown in [25]. It is an interesting fact that, in the strongly

harmonizable case, (35) holds for all A € T, so that #(-) is continuous. Another

example is provided by the process { X;,t € Z} which is a solution of

X; = an_l + €e, te Z, (36)

where ¢,’s are uncorrelated random variables with zero means and unit variances,
and |a| < 1. It is easily seen that the limit (34) exists for this sequence. One can
also cox}sider kt* order difference equations with comstant coefficients, extending
(36), such that all the roots of the characteristic equations lie inside the unit circle,
but the details will not be entered into here. What about the weakly harmonizable
class? In fact, this question was raised in {31]. It turns out that neither includes the
other completely. The preceding example already gives a nonharmonizable process
of class(KF). The other noninclusion will now be discussed since that provides a
better insight into the structure of both these classes.

Consider a weakly harmonizable process {X;,t € T} with covariance r and
F as its representing bimeasure (cf.(3)). Suppose that for this bimeasure the
dominated convergence theorem holds in the sense that if |f,] < g ae., f, — f

pointwise, and

LLg(A)g(A')F(dz\,dz\') < oo =
im [ /T LN LD F(d, dXY) = /T /T FONVFONF (A, dN) < 0. (37)

n=—00

If F has finite variation, this is automatic so that the strongly harmonizable case is
included. It also holds for some F having only finite Fréchet variation. For instance
this holds if F is of finite variation locally but not on 7' x T itself. (Such f’s appear
in the Cramér classes. This statement appeared in ([28|, Thm. 8.1) without such
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a precise qualificatian.) On the other hand some restriction is necessary since

all weakly harmonizable processes are not in class(KF) as the following example

shows: Let {€,, —c0 < n < oo} be a complete orthonormal sequence in a space
L%( P) so that the underlying probability space is separable. The sequence is clearly
stationary. Let {a,, —00 < n < co} be a bounded sequence of numbers and define
a mapping A : €, — an€, in LZ(P), and extend it linearly onto all of LZ(P). This
is possible since the ¢, form a basis. Thus A is a bounded linear operator in L3(P),
and since the {¢,}ncz is stationary, Theorem 2.2 implies that X, = A¢,,n € Z,
is weakly harmonizable. It will be shown now that for a suitable set of a,’s, the
X, sequence is not in the class(KF), and this will give the noninclusion statement
mentioned above.

Let 6, = a_,, 8¢9 = 1, and for k > 0, define

o= 3 Ixe. + 2xo,1(K)

n=0
where C, = [22",22"+1) and D, = [22*11,227+2)  the left closed and right open
intervals. The sets C, and D,, are disjoint, and for each k the series is finite (only
one nonzero term), 1 < ax < 2,k > 0. Then A defined with this set of a,’s is
clearly bounded. The covariance r(k,!) = 0 if k # [, and hence

n—h-—1

1 0, if h#0
ra(h) = = ,,;, r(k, k+h) = {&Zz;éai, £ b o O,
So limp oo ra(h) = 0 for h # 0, but
o ifn=2m_-1
- 3.2%m~-1)
rn(O) {3 - EﬂL"" lf n= 22m+1 - 1’ (38)

and hence limm—oo r23m—;(0) = g-,limm_.,, raam+1-1(0) = 4. Thus limp—qp #a (0)
does not exist. Consequently {X,,n € Z} € class(KF). This example is due to H.

Niemi (personal communication).

26




"

The preceding computation suggests an extension of class(KF). Since by def-
inition a process {X,,n € Z} C LZ(P) belongs to class(KF) provided that the
sequence of their averaged covariances converges, it is natural to consider a wider
class by looking at their higher order averages. Thus one can say that a process
with covariance r is in class(KF,p), p = 1 being the original definition (cf.(34)), if
the following limit exists for each kA € Z:

lim r{)(h) =F(h), p>1 (39)

n—o0

where

1 n
P(p) = = (p~1) M) =
riP) () = = ’;r,, (R), 8 (h) = ra(h).
The analog for the case that T = R can similarly be given. Since in (34)

ra(-) is positive definite, it is seen easily that r2(-) is also positive definite. Hence
7(-) satisfies the same hypothesis and (35) holds, so that the representing H(-) may
now be called a p** order associated spectrum. The classical results on summability
imply that if ri) (k) — 7(h) then #{)(h) — #(h) for each integer p > 1, but the
converse implication is false. Hence class(KF) C class(KF,p) C class(KF,p+1)
and the inclusions are proper. Thus one has an increasing sequence of classes of
nonstationary processes each having an associated spectrum. The computations
given for (38) show that the preceding example does not belong even to the class
Up>1 class(KF,p). This also indicates that weakly harmonizable processes form a
much larger class than the strongly harmonizable ore, and is not included in the
last union.

It should be remarked here that a further extension of the preceding class
is obtainable by considering the still weaker concept of Abel summability. The
consequences of such an extension are not yet known, and perhaps should be

investigated in future.




' A

The general idea behind the class{(KF,p), p > L is that if the given process
is not stationary, then some averaging, which is a smoothing operation, may give
an insight into the structure by analyzing its associated spectrum. Moreover, if
{X,,t € R} € class(KF), and f is any Lebesgue integrable scalar function on R,
then the convolution of f and the X, process is again in class(KF) whenever the

function ¢ defined by ¢(t) = [E(|X.|?)]3 is in LI(R) for some 1 < ¢ < co. Then

Ye=(f+X)e = /R flt~0)X,ds, tER, (40)

where the integral is a vector (or Bochner) integral, gives {Y;,t € R} € class(KF).
Thus class(KF) itself is a large family. This example is a slight extension of one
indicated in [31].

7. The Cramér-Hida approach and multiplicsty. In the previous discussion of
Karhunen and Cramér classes, it was noted that each { X, t € T} admits an integral
representation such as (26) relative to a family {g(¢t,:),t € T} and a stochastic
measure Z(-) on the spectral set S into L3(P). Both g(¢,u) and Z(du) can be
given the following intuitive meaning, leading to another aspect of the subject.
Thus X, may be considered as the intensity of an electrical circuit measured at
time ¢, Z(du) as a random (orthogonal) impulse at u, and g(¢,u) as a response
function at time u but measured at a later time t. So X, is regarded as the
accumulated random innovations upto ¢. This will be realistic provided the effects

are additive and g(t.u) =0 if u > t. Hence (26) should be replaced by

X, = / il u)Z(du), teT. (41)

Since in (26) the g there need not satisfy this condition, that formula does not
generally reduce to (41). So one should seek conditions on a subclass of Karhunen
processes admitting a representation of the type (41) which clearly has interesting

applications. Such a class will be discussed together with some illustrations.
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First it is noted that each process {X.,t € T} C L3(P), assumed to be left
continuous with right limits (i.e. for each t € T, E(| X, — X,—4|%) = 0 as h — 07,
and there is an X, such that E(lf(, ~Xern|?) = 0as h — 0T, denoted Xe = Xeto),

can be decomposed into a deterministic and a purely nondetermsnsstic part (defined

below). The deterministic component does not change from the remote past so
that it has no real interest for further stochastic analysis such as in prediction
and filtering problems. Thus only the second component has to be analyzed for
a possible representation (41). This was shown to be the case by Cramér{7] and

Hida[12] independently, and it will be presented here. ([7] has the 1960 reference.)

Let ¥ = 3p{X,,t € T} C L%(P), and similarly ¥ = 3p{X,,8 < t} C X
and ¥_o, = NeerX:. Since X, C ¥, for t; < t, one has ¥_, C ¥, C ¥ and
N_o represents the remote past while ¥, stands for the past and present. The X,
process is deterministic if N_., = ¥ and purely nondetermsnistic if ¥_, = {0}.
Thus the remote past generally contributes little to the experiment. The separation
of remote past from the evolving part is achieved as follows. A process {X,,t € T}
which is left continuous with right limits (and this is automatic if T = Z) can be
uniquely decomposed as: X; =Y, + Z;, t € T, where the Y,-component is purely
nondeterministic, the Z, is deterministic and where the Y; and Z, processes are

uncorrelated. (This is a special case of Wold’s decomposition.)

Since the deterministic part is uninteresting for the problems of stochastic
analysis, and can be separated by the above result, one can ignore it. Hence for the
rest of this section st wsll be assumed that our processes are purely nondeterministic.
The proofs of the following assertions may be completed from the work of Cramér

in (7], (cf., the references for his early papers there).

The approach here does not give much insight if T = Z. However, T = R
is really the difficult case, and the present method is specifically designed for it.

The new element in this analysis is the concept of “multiplicity”, and it is always

29




e ——

4

one if T = Z while it can be any integer N > 1if T = R. (See [5], and the

references there, and also [7].) The basic idea is to “break up” the continuous

parameter case, in the sense that each such process can be expressed as a direct

sum of mutually uncorrelated components of the type (41) so that each of the
latter elements can be analyzed with special methods. This relatively deep result
was obtained independently (cf., [7] and [12]) and can be given as follows:
Theorem 7.1 Let {X,,t € R} C L3(P) be a purely nondeterministic process
which is left continuous with right limsts on R. Then there ezists a unique integer
N,1 £ N £ o0, called the multsplicsty of the process, and a not necessarsly unique
set of ordered pasrs {(gi(t,*), Fr),1 < k < N,t € R} of the following description:
(1) gx(t,:) : R — C is a Borel function, 1< k< N,t€R, ’
(i) Fi : R — R 1s a non-decreasing (not necessary bounded) left-continuous '
function such that if vi(A) = [, Fi(d)),A C R is a Borel set, then nr41 <<
vk, 1 < k<N, (i.e. vp4y 18 domsnated by vy)
(iii) {gx(a,-), 8 < t} C L*{(—00,1),34) 42 {norm) dense; and f r <2 the covars- I

ance function of the X, process, then

N .min(st)
o) =3 [T s N VRN, ot € R, (42)

k=1 ¥ —°
the series converging absolutely if N = +co.
Using the Lebesgue decomposition of measure theory, it can be verified that if
the X, process is stationary and nondeterministic then in (2) the spectral function
is absolutely continuous relative to the Lebesgue measure on R with a density and

hence, as noted in (12), (42) becomes

min(o,t)
(s, t) = / o(s = \)7(t = M. (43)

-C0

Thus such stationary processes always have multiplicity unity. The converse is not
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true. There exist nonstationary (even strongly harmonizable) nondeterministic
processes of multiplicty IV for any given N,1 < N < o0.
It should be noted that (42) can also be stated for the X, process using the

(stochastic) integral representations:

X, = E / x(t, 4)Ze(du), t € R, (44)

k=1
where each Zj(:) is orthogonally scattered, E(Zi(A4)Zi(B)) = 0 if k # I, and
=(ANB) = [,.p Fi(d)) if k = l. The pairs {g(t),"), Fi),1 < k < N,t € R}

satisfy the previous conditions. Moreover, one has

He =@, Kie, tER, (45)

where ¥ was defined before and K, = 3p{Z:(—c0,s) : s < t} c LZ(P). Also in
case gi(t,t) > 0,t € R, then writing §(t,A) = gx(t,A)/gx(),A), and Zi(d)) =
9x(A, A)Z(d)) in (42) or (44) one can assume that gz (A, A) = 1, for convenience.

To get a better feeling for this somewhat complicated decomposition, let us
present a class of nonstationary processes of multiplicity one.

Theorem 7.2 Suppose that {X,,t € R} C L3(P) is a process which may
be represented as (44) (or (42)). Suppose further that each gi(-,-) satisfies the --
Jollowsng condstions:

(1) g (t,t) = 1 (this is no restriction if gx(t,t) > 0),t € R,

(ii) for each A < t,gi(¢,)) and & S=(t,A) ezists, continuous and bounded,

(iil) each Fy # a constant and hac o (Lebesgue) density F) which has at moat ~

a finite number of discontinusties on each finste subinterval of R.

Then the multiplicity of the process {X,,t € R} is one,i.e., N = 1. .




The case N =1 already has interesting connections with other known classes.
For instance let g(t.A) = p(t)/p(}) in (42) with N = 1, and p(A) > 0,A € R. .
Writing f = F’, (42) becomes

min(s,t)
(ot =sople) [ Lo (46)

Hence for all ¢ < ¢t < u, if p(3.t) = r(s,t)/r(3,3),3 < t, one gets

p(s,u) = p(s,t)p(t, u). (47)

This p(-,-) is called a correlation characteristic, and the functional equation (47)

implies that {X;,t € R} is a wide- sense Markov process. This means for each

t; <tz <..<tn,n 211t €R, the (orthogonal) projection of X, on the linear
span of X, , ..., X.,_, is the same as the projection of X;, on the one dimensional
span of X, _,. (For a proof of this classical fact see[29], p. 145.) It is of some
interest to note that, in the special case of (46), if (s, t) = r(s,2)/[r(s, s)r(t,¢)]7,
the correlation coeflicient, then also j satisfies the relation (47). If the X, process
is normal and (46) holds, the above noted projection becomes the conditional
expectation and the wide-sense property becomes the usual (sf:rict-sense) Markov
property. As an example, one may consider r(3,t) = ezp(—c|s — t|),c > 0.

A different example of a nonstationary (nonharmonizable) process of multi-
plicity one is the Brownian motion. Here g(¢t,A\) = 1,F(u) = 0if u < 0, = u, if
0<u<l,and =1if u>1, N =1 in (42). If the process is not assumed normal
(or Gaussian), g = a constant, and F is also a constant outside of a compact in-
terval, then each nondeterministic process of the form (44), which has orthogonal ‘
increments, has multiplicity one. Thus each of these classes is large in itself. More
useful applications will now be discussed in the final two sections. (ef. also [7].) 3

8. Prediction and related questions A linear least squares prediction of the

X, process, by definition, is a linear function of the past and present {X,,u < s}
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which is closest to X,,t > s, so that if X,,, is the desired element in ¥, then

E(| X, - X.,%) =inf{E(|X. - Y]?): Y € ,}, (48)

where, as usual ¥, = 3p{X,, u < s} € LZ(P). Consequently ffg,, = P,X., with P,
as the orthogonal projection of ¥ = 3p{X;,t € R} C L3(P) onto ¥,.

For processes satisfying the hypothesis of Theorem 7.1, the predictor f(.,. i3
obtained immediately. In fact, if X, is as above so that it admits a representation
given by (44), one has

X,,=P,X. = Z / k(t, A) Zi(d)), (49)
k=17

since ¥, = &/, K; , in (45). Moreover, the minimum mean square error of predic-

tion is obtained as

N t
2, = BiX, - X, ?) = 3 / lox (2, \) P F(d). (50)
k=1"7"%

This in principle furnishes the desired solution of the least squares linear prediction
problem for processes of the type (44). In general, however, there is as yet no
recipe for determining the multiplicity of a given continuous parameter purely
nondeterministic second order left continuous with right limits process. But results
are available if one is willing to assume somewhat more on gx’s, generalizing the
stationary case.

Even when the X: process does not satisfy all the conditions of Theorem 7.1,
the least squares prediction problem can be formulated and solved differently. To
understand this aspect, let {X,,t € T} C L3(P) be a process and ¥, = 3p{X, :
s < t} as before. Suppose that ¥ = 3p{X,,t € T} < L3(P) is separable, which
holds if the covariance r(-,-) is continuous (e.g., T = Z). For each t9 € T, the
best linear least squares predictor of X;, based on the past {X,,u < s < to} is
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X.o,, = P,X,,(eX,) and it is the limit-in-mean of linear combinations of X, u < 3.
On the other hand, it is known that a nonlinear least squares predictor of X,, is

given by the conditional expectation

Ygo,, = E(X.O]Xu,u S 8).

If the process is normal then one can verify that X’,O,, = Y4 ,,- Thus for normal pro-
cesses, with a continuous covariance, both these predictors coincide. (See Yaglom
[34], Chapters 4 and 6 for a lucid discussion of these problems.) Since from a practi-
cal point of view it is not feasible to have a complete realization {X,,u < a} at our
disposal, it is desirable to have some approximations to the best predictor. A result
on this can be described as follows. Let T = Z for simplicity, and for s < ¢g € Z,
define G, = sp{X,, Xo—1, ..., Xo—n} so that lim, §, = 3P{Un<oGn} = ¥,. If
f{.o,,, = @n(Xt,), @n being the orthogonal projection of ¥ onto G, then one can
show, using the geometry of ¥, that E(| X, . — Xi0,02) = 0 2s n — co. However,
the pointwise convergence of X,o,n to X,o,, 18 much more difficult, and in fact the
truth of the general statement is not known. For a normal process, an affirmative
answer can be obtained from the following nonlinear case.

Let Yo n = E(Xy,|X,, X1, ..., Xo—pn) and Y,,,, be as before. Then the se-
quence {Yy;,n,n 2> 1} is a square integrable martingale such that sup, E(|Y:, n[?) <
oo. Hence the general martingale convergence theory implies Yiom — Yi,.. both
in the mean and with probability one, as n — 0o0. Since for normal processes both
the linear and nonlinear predictors coincide, the remark at the end of the preced-
ing paragraph follows. Thus predictors from finite but large samples give good
(asymptotic) approximations for solutions f(}o,, (or Ys,,,) and this is important in
practical cases. However, the error estimation in these problems received very little
attention in the literature. In the case of normal processes certain other methods

(e.g., the Kalman filter etc.) giving an algorithm to compute the Xeo.n-sequence
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are available. But there is no such procedure as yet for the general second order
processes.

At this point it will be useful to present a class of nondeterministic processes,
belonging to a Karhunen class, which arise quite naturally as solutions of certain
stochastic differential equations. This will also illustrate the remark made at the
end of Section 4.

In some problems of physics, the motion X, of a simple harmonic oscillator,
subject to random disturbances, can be described by a formal stochastic differential

equation of the form (cf.[3]):

2X(t) dX(t)
dt2 dt

where f is the friction coefficient and wo denotes the circular frequency of tke

+ 852 4 W2 X() = A1), (X() = X2), (51)

oscillator. Here A(t) is the random fluctuation, assumed to be the white noise~the
symbolic (but really fictional) derivative of the Brownian motion. In some cases f
and wo may depend on time. To make (51) realistic, the symbolic equation should

be expressed as:

dX(t) + a1 (£) X(t)dt + ax(t) X(t)dt = dB(t), (52)

where the B(t)-process is Brownian motion. Thus for each ¢ > 0, B(t) is normal
with mean zero and variance o%t, denoted N(0,0%t), and if 0 < t; < t; < t3 then
B(ts3) — B(tz) and B(t2) — B(t;) are independent normal random variables with
N(0,03(ts ~ t2)), N(0,0%(t2 ~ t;)) respectively. Also X(t) = %{ﬁ is taken as a
mean square derivative. Then (52) and (51) can be interpreted in the integrated
form, i.e., by definition,

b

[
/ F(B)A(t)dt = / £(8)dB(2), (53)

a
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the right side of (53) being a simple stochastic integral which is understood as
in Section 3(since B is also orthogonally scattered). Here f is a nonstochastic
function. The integration theory, if f is stochastic needs a more subtle treatment
and the B(t)-process can also be replaced by a “semi-martingale.” (See, e.g., [26],
Chapter IV and V for details.) The point is that the following statements have
a satisfactory and rigorous justification. With Brownian motion one can assert
more, and, in fact regarding the solution process of (52), the following is true.

Theorem 8.1 Let J = [ag,b0] C RY be a bounded interval, and {B,,t € J}
be the Brownian motion. If a;(-),s = 1,2 are real (Lebesgue) integrable functions
on J such that eguation (52) is valid, then there ezists a unique solution process
{Xe,t € J} satisfying the instial conditions X,, = Cl,)'{.,o = C2 where Cy,C3 are
constants. In fact, the solution ss defined by

¢

X, = / Gt,u)dB(u) + CiVi(t) + CoValt), te . (54)
a9

where Vi(-),s = 1,2 are the unique solutions of the accompanying homogeneous

differential equation:

——dadﬁt) + al(t)%-(:—) +az(t)f(t) = 0 (85)

with the initial conditions f(ao) = 1, f(ao) = 0, and f(ae) =0, f(a0) =1 respec-
tively. In (54), G : J x J — C 1s the Green function. This is a continuous function
such that ’?f- 18 continuous in (t,3) onag <t < 9 < by, and has a jump on the

diagonal, i.e.,

aG aG
E(a +0,8) - 79?(3 -0,8)=1. (56)

Moreover, the X, process given by (54) is of Karhunen class and ss purely nondeter-
ministic (since the spectral function of B is the Lebesgue measure). Its covariance

r 12 given by

36




min(e,t)
r(s,t) = ] G(3,))G(t,N)dA, s, ted, (57)

Q

and the process has multiplscity one.

This result shows that the processes appearing as solutions of the (linear)
stochastic differential equations have interesting special properties. Further one
can show that the vector process {(X;, X.),t € J} is a (vector) Markov normal
process almost all of whose sample paths are continuous. (For details of these
assertions, see [25], Sec. 4.) Related results for the n**-order case with continuously
(n-1) times differentiable coefficients a;(-), and initial conditions C; = 0 have been
analyzed by C. L. Dolph and M. A. Woodbury [8]. The work exemplifies the
importance of nondeterministic processes of multiplicity one in applications coming
from both the physical sciences and communication theory. Let us now turn to -
another type of application.

The general filtering problem can be presented, following Bochner [2], as fol-
lows. Let X be the set of all second order process X = {X,,¢ € T}, with zero
means. Let A be a linear operator on the linear space Ir. Suppose X,Y € Ir
and that X € domain(A), and

AX=Y or (AX), =Y, teT. (58)

As usual T = Z, or = R. Typically the Y-process is the output and the X process,
the snput and A is termed a (linear) filter. The problem here is to find conditions on

A such that if the output is known one can recover the input process. As examples,

(AX)e = ZaiXe—a, teZ a; €R,

=1
(AX), =/ Xi-of(u)du, t€ R, suitable f.
R
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The first one is called a difference or a polynomsal or a moving average filter, and
the second one, an integral filter, one can also have a difference-differential or an
integro-differential filter and the like. If both X, Y are stationary processes and A
is a polynomial or an integral filter, then precise conditions for recovering the input
were first obtained by Nagabhushanam [19]. His results were extended by Kelsh
[15] if X,Y are strongly harmonizable, and (using necessarily different methods)
a further extension to the weakly harmonizable case by Chang. For an exposition
of these results with a numerical illustration, one may refer to [4].

The above described filtering problem changes its character if only a finite

segment of the observations on {X,,t € T} is available. Assuming a knowledge
of the covariance structure (from prior information) of the process, how can one
estimate an element of the procéss (prediction or interpolation) which is not part
of the observed ones? While a precise set of conditions is difficult to obtain, good
sufficient conditions can be given for its solution. This point will be discussed by
a specialization and adjustment of the work from {8].

Let {X,,0 <t < 1} C L?(P) be an observed process which is known to have

a linear time trend and a random disturbance. Thus the model is given as:

Xe=a+bt+Y,, 0<t<1 (59)

where a, b are real but unknown constants and {Y;,0 < ¢t < 1} is a noise process
which is assumed to be stationary with mean zero and covariance r, given by
r(s,t) = ezp(—pF|s—t|),f > 0. The problem is to find an unbiased linear estimator
of X¢o,t0 > 1, based on the output {X,,0 < t < 1}, using the least squares
criterion. This can be made more explicit as follows: it is desired to find a weight

function w(-) on 0 < t < 1 which is of bounded variation such that if

1
Xy (w) = /0 X.dw(t). (60)
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is the linear estimator then E{X,,(w)) = a +bto, a,b € R and E(|X., — X, (w)|?)
is a minimum. Since r and hence 2 are known, let us take # = 1 for this illustration.
Then subject to the unbiasedness constraint, one can minimize the mean square
error using the variational calculus (or Lagrange multipliers) and show that there

exists a we. ‘it w(-) having a density w’. Thus after a calculation, one finds w' and
X, (w) to be:

20'(t) = %[56 — 36ty + 36¢(2¢y — 1)) (61)

and

1
X, (w) = Eli{/ X.[28 — 189 + 18t(2to — 1)]dt
0
—2X,(4 - 2Tty) — 2Xo(27t0 — 23)}. (62)

The mean square error for this problem is then

o? = E(|X,, — X, (w)[?) = [T2t3 — T2to + 56]/57. (63)

The actual details of computations for (61)-(63) involve solving an integral equation
and thus are not entirely simple. It is however interesting to remark that, in this
calculation, one need not find estimators of a, b separately from the data, and the
variational calculus enables a direct solution as indicated.

The problem of minimum variance unbiased (linear) estimator of a,b is also
important. For instance, if 6 = 0 in (59), then an estimator of the unknown
parameter a (i.e. estimating the mean of the X process without trend) can be

obtained by a similar method. The estimator 4 of the form

1
d(w) =/o Xedw(t), E(a(w)) =a, a €ER,

39




has been considered by Grenander {10], and the result is:

1
d=%[/ Xedt + X3 +Xo]. (64)
0

Other estimation methods and their properties are discussed for stationary error

processes in [11].

9. Some inference problems with normal processes. In this final section some
special inference questions when the processes are normal are briefly discussed to
supplement the preceding work.

Recall that a normal process {X,,t € T} is a collection of random variables
such that each finite subset has a joint normal distribution. Now if (Q, Z, P;),s =
1,2 are a pair of probability spaces with a common base space (2, then P; and
P are said to be mutually singular or perpendicular (written P; L P;) if there is
an event Ag € L such that P;(A¢) = 0 and P2(Ag) = 1, and mutually absolutely
continuous or equsvalent (written P, ~ P;) if both P, and P, vanish on the same
class of sets from I. For instance, if } = R, X = the Borel o-algebra, P; = normal
and P, = Cauchy, then P, ~ Q. On the other hand if P, is normal and P, is
Poisson, then P; 1 P;. However, if @ = RT, T = the cylinder o- algebra, then
X: : O — R is defined as X,(w) = w(t), i.e., the coordinate function, and the
problem of determining as to when P; ~ P2, or P, L P,, or neither, is not simple.
In the case that both Py, P; are normal probability measures on @ = R7, only the
main dichotomy that P ~ P; or P L P; can occur. This was first established
independently by J. Feldman and J. Hijek in 1958 and later elementary proofs
of this theorem were presented by L.A. Shepp and others. A simplified but still
nontrivial proof of this result with complete details is given in ({27], pp. 212-217).
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The statistical problem therefore is to decide, on the basis of a realization,
which one of Py, P, is the correct probability governing the process. In the singular
case, this is somewhat easier, but in case P, ~ P,, the problem is not simple. A
number of cases have been discussed in [10] before the dichotomy result is known.
The simplest usable condition in the general case is the following.

Let P; have the mean and covariance functions (m;, r;), written P(m;, r;),1 =
1,2. Then P, ~ P; iff one has P(0,r;) ~ P(0,r2) and P(my,r) ~ P(ma,ry).
Thus P(my,r,) ~ P(mg,rs) iff P(my,r) ~ P(mg,r;) ~ P(m2,r;). Some appli-
cations with likelihood ratios appear in [25]. This equivalence criterion will now
be illustrated on a purely nondeterministic normal process of multiplicity one.

If {X;,t € T} is a normal process with mean zero and covariance r let Z, =
m(t) + X, where m : T — R is a measurable nonstochastic function, so that the
Z,-process has mean function m and covariance r and is also normal. Let P and
P,, be the corresponding probabilities governing them. The mean m(-) is called
admissible if P ~ Pp,. The set Mp of all admissible means is an interesting space
in its own right. In fact, it is a linear space, carries an inner product and with
it Mp becomes a Hilbert space attached to the given normal process. (For an
analysis of Mp, and the following, see [24].) One shows that m € Mp iff there is
a unique Y € ¥ =3p{X,,t € T} c L3(P) such that

m(t)=E(YX,), teT | (65)

and then the likelihood ratio 4EI is given by

2= = cap(Y - E(Y)}. (66)

Using now an abstract generalization of the classical Neyman-Pearson lemma due
to Grenander ([10]. p.210), one can test the hypothesis Hy : m = 0, vs, H, : m(t) #

0. The critical region for this problem can be shown to be
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Ar={weEQ:Y(w) <k}, (67)

where k is chosen so that P(A;) = a, the prescribed size of the test (e.g., @ = 0.05
or 0.01). This general result was first obtained by Pitcher {23]. In the case of
nondeterministic processes of multiplicity one, the conditions on admissible means
can be simplified much further. This may be stated following Cramér (7], as follows.

Let T = [a, }] and X, be purely nondeterministic so that by (44) with N =1,

one has

X, = f 'g(t,,\)zu,\), teT, (68)

and that ¥ = 3p{X, € T} = 3p{Z(A) : A C T, Borel}. But m € Mp iff there
exists a Y € ¥ such that (65) holds. In this special case therefore, ¥ admits a

representation as

Y= / " RO)Z(dN), (69)

for some h € L?([a,}], F) where F(A) = E(|Z(A)[?). Suppose that the deriva-
tive F' exists outside a set of Lebesgue measure zero. Since Z(-) has orthogonal

increments, (65), (68) and (69) imply

m(t) = /‘ h(A)g(t, ) F*'(A)dA, teT =[a,b]. (70)

This is the simplification noted above. I %{- is assumed to exist, then (70) implies
that the derivative m'(t) of m(t) also exists. In particular if the X, is the Brownian
motion so that ¢ = 1 and F' = 1, one gets m'(t) = h(t), (a.e.) and h € L?([a, ], di)
in order that P, ~ P.

There is a corresponding result, when P; ~ P,, P; are normal, but have dif-

ferent covariances. However, this is more involved. A discussion of this case from
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different points of view occurs in the works [35], [33], (7] and [25]. (See also the
extensive bibliography in these papers.) There is a great deal of specialized anal-

ysis for normal process in both the stationary and general cases. It is thus clear

how various types of techniques can be profitably employed to several classes of
nonstationary processes of second order. Many realistic problems raised by the
above work are of interest for future investigations.
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is given., The flexibility of Karhunen classes and their use in the analysis of
the spectral domain of harmonizable class is presented in detail. The role of
multiplicity and its use in inference problems are included. Linear prediction.
of nonstationary processes with differential and polynomial filters and least-
squares estimation and related problems are discussed at length.
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